
ESRF User Meeting 2025
PyFAI tutorial
Jérôm� Ki�ff�r
Edgar Gutiérr�z F�rnánd�z
10/02/2025



edgar.gutierrez-fernandez@esrf.fr

PyFAI tutorial - overview

• 10/02/2025 / 14:00 – 17:00
• Each us�r sh�uld us� its �wn c�mput�r (Wind�ws, Linuc, MacOS)
• 1st half: concepts of pyFAI

• Motivations
• Applications
• Working philosophy

• Coffee break (~15 minutes)
• 2nd half: hands-on

• Installation of python: venv/conda/visa
• Installation of pyFAI
• Calibration GUI
• AzimuthalIntegratrion
• Other pyFAI applications: integrate, diffmap-view, worker…



edgar.gutierrez-fernandez@esrf.fr

PyFAI = Python Fast Azimuthal Integrator

Data collectionSetup experiment

*BM28

Data reduction Data analysis



edgar.gutierrez-fernandez@esrf.fr

PyFAI = Python Fast Azimuthal Integrator

Data collectionSetup experiment

*BM28

Data reduction

Calibration

3D geometry

Diffraction mapping



edgar.gutierrez-fernandez@esrf.fr

• Scattering is the deflection of photons upon interaction with matter.
X-ray scattering techniques

Source: Wikipedia
CC-BY-SA: Jeff Dahl

X ray
Monochromatic

2D camera

Sample

Bragg spots:
diffraction from
single crystal

Debye-Scherrer
ring: diffraction from
polycrystals

M�n�chr�matic b�am
Δλ≈0

2-Dim�nsi�nal d�t�ct�rs
Shap� = (x,y)

Elastic scatt�ring
Einc = Escat
ΔE=0



edgar.gutierrez-fernandez@esrf.fr

• If the material is crystalline, the scattered
photons create constructive interferences,
like water waves.

• Constructive interference between scattered
X-ray takes place if Bragg relation is fulfilled:

𝒏𝝀 = 𝟐𝒅 𝐬𝐢𝐧𝜽

X-ray scattering techniques: diffraction / scattering
• If the material is disordered, the scattered
photons create broad distributions of
intensity.

• More ambiguous and hard to analyze.
Usually requires complementary techniques.

https://biosaxs.com/technique.html



edgar.gutierrez-fernandez@esrf.fr

• The study of highly crystalline materials
(metals, ceramics, oxides…) is named
‘diffraction’’.

• Powder Diffraction: isotropic
• Phase identification
• Crystallinity
• Lattice parameters
• Thermal expansion
• Phase transition
• Strain/crystallite size

X-ray scattering techniques: diffraction / scattering
• The study of largely/inherently disordered
materials (polymers, proteins, colloids…) is
named ‘scattering’’.

• Wide-Angle X-ray Scattering (WAXS):
analog to diffraction:

• Phase identification
• Crystalllinity/orientation

• Small-Angle X-ray Scattering (SAXS):
micro/nano scale prove:

• Particle shape/surface
• Proteins domains
• Protein folding
• Colloid parameters
• Fiber orientation



edgar.gutierrez-fernandez@esrf.fr

• The study of highly crystalline materials
(metals, ceramics, oxides…) is named
‘diffraction’’.

• Powder Diffraction: isotropic

X-ray scattering techniques: diffraction / scattering
• The study of largely/inherently disordered
materials (polymers, proteins, colloids…) is
named ‘scattering’’.

• WAXS: analog to diffraction.

• SAXS: micro/nano scale prove.

• Both rely on the same transformation: 2D image to azimuthal average.

• PyFAI is the first tool to be used after data acquisition.



edgar.gutierrez-fernandez@esrf.fr

pyFAI: pythonic tool to reduce 2D patterns

Why pyFAI?

• Python as the most accessible and
widespread programming language in
science.

• Developed and generally used at the ESRF:
• Data acquisition (BLISS)
• Data visualization (silx)
• Data analysis (PyMCA)

• PyFAI combines python API with fast
algorithms written in Cython and OpenCL



edgar.gutierrez-fernandez@esrf.fr

Alternatives to pyFAI
 Fit2D

 MIT licensed from ESRF, written in Fortran, now discontinued

 XRDUA

 GPL licensed from U. Antwerp, written in IDL, focuses on diffraction mapping

 DAWN

 EPL licensed from Diamond Light Source, written in Java

 DataSqueeze

 Freeware from U. Pennsylvania

 Foxtrot

 Commercial, from XENOCS & SOLEIL synchrotron, written in Java

 MAUD

 Freeware from U. Trento, written in Java

 GSAS-II

 Freeware tool from U. Chicago & APS, written in Python

 Scikit-beam

 BSD licensed from NSLS-II, written in Python



edgar.gutierrez-fernandez@esrf.fr

PyFAI: core concepts

Detector
• detector_factory
• Generic detector

Image / Frame / Pattern
• Numpy 2D array
• To be read using FabIO,
silx, h5py…

Geometry
• X-ray wavelength
• Position and rotations
of the detector

Integrator
• Takes the detector and geometry
• Takes the image
• Performs the integration



edgar.gutierrez-fernandez@esrf.fr

PyFAI: core concepts

Detector
• detector_factory
• Generic detector

Image / Frame / Pattern
• Numpy 2D array
• To be read using FabIO,
silx, h5py…

Geometry
• X-ray wavelength
• Position and rotations
of the detector

Integrator
• Takes the detector and geometry
• Takes the image
• Performs the integration



edgar.gutierrez-fernandez@esrf.fr

PyFAI: core concepts

Detector
• detector_factory
• Generic detector

Image / Frame / Pattern
• Numpy 2D array
• To be read using FabIO,
silx, h5py…

Geometry
• X-ray wavelength
• Position and rotations
of the detector

Integrator
• Takes the detector and geometry
• Takes the image
• Performs the integration



edgar.gutierrez-fernandez@esrf.fr

PyFAI: core concepts

Detector
• detector_factory
• Generic detector

Image / Frame / Pattern
• Numpy 2D array
• To be read using FabIO,
silx, h5py…

Geometry
• X-ray wavelength
• Position and rotations
of the detector

Integrator
• Takes the detector and geometry
• Takes the image
• Performs the integration



edgar.gutierrez-fernandez@esrf.fr

PyFAI: core concepts

Detector
• detector_factory
• Generic detector

Image / Frame / Pattern
• Numpy 2D array
• To be read using FabIO,
silx, h5py…

Geometry
• X-ray wavelength
• Position and rotations
of the detector

Integrator
• Takes the detector and geometry
• Takes the image
• Performs the integration



edgar.gutierrez-fernandez@esrf.fr

PyFAI: core concepts

Detector

Geometry

Integrator



edgar.gutierrez-fernandez@esrf.fr

PyFAI: core concepts

Detector

Geometry

Integrator

RAW DATA



edgar.gutierrez-fernandez@esrf.fr

PyFAI: core concepts

Detector

Geometry

Integrator

RAW DATA PROCESSED DATA



edgar.gutierrez-fernandez@esrf.fr

Detector instance
• Import detector from detector_factory (e.g. Pilatus1M from Dectris)



edgar.gutierrez-fernandez@esrf.fr

Detector instance
• Import detector from detector_factory (e.g. Pilatus1M from Dectris)

Detector information:
• Pixel size 1
• Pixel size 2
• Binning: default (1,1)
• Max_shape
• Orientation (1→4)



edgar.gutierrez-fernandez@esrf.fr

Detector instance
• Import detector from detector_factory (e.g. Pilatus1M from Dectris)

Detector information:
• Pixel size 1
• Pixel size 2
• Binning: default (1,1)
• Max_shape
• Orientation (1→4)

Most of the time, by knowing the
name of your detector is
enough!



edgar.gutierrez-fernandez@esrf.fr

Detector instance
• Import detector from detector_factory (e.g. Pilatus1M from Dectris)

• Customized (generic) detector
Detector information:
• Pixel size 1
• Pixel size 2
• Binning: default (1,1)
• Max_shape
• Orientation (1→4)

Normally, this step is skipped as it is
done through the calibration graphical

interface

Bet: > 50% pyFAI crashes are related to wrong detector
shapes



edgar.gutierrez-fernandez@esrf.fr

Geometry instance
• A geometry is fully defined by:

• A detector instance

• Sample to detector distance (in meters)

• Wavelength of the beam (in meters)

• Three rotations of the detector

• Coordinates of the point of normal incidence
(PONI), from the sample to the detector
plane.

Normally, the calibration of the geometry is fully done
through the graphical interface.



edgar.gutierrez-fernandez@esrf.fr

Calibration of geometry: pyFAI-calib2
• Calibration is made after measuring a standard sample:

• LaB6, Cr2O3, AgBh…
• Choosing the correct detector (+ orientation, binning, mask…)
• Selecting the Debye-Scherrer rings associated to the standard
• Fitting the rings
• Refinement
• Validation
• Saving of .poni file

.poni file



edgar.gutierrez-fernandez@esrf.fr

Calibration of geometry: pyFAI-calib2
• Calibration is made after measuring a standard sample:

• LaB6, Cr2O3, AgBh…
• Choosing the correct detector (+ orientation, binning, mask…)
• Selecting the Debye-Scherrer rings associated to the standard
• Fitting the rings
• Refinement
• Validation
• Saving of .poni file

.poni file



edgar.gutierrez-fernandez@esrf.fr

PyFAI: creating an integrator

Detector

Geometry

Integrator



edgar.gutierrez-fernandez@esrf.fr

PyFAI: creating an integrator

Integrator



edgar.gutierrez-fernandez@esrf.fr

PyFAI: creating an integrator

Integrator



edgar.gutierrez-fernandez@esrf.fr

PyFAI: creating an integrator

Integrator

*FiberIntegrator is targeted to Grazing Incidence
experiments



edgar.gutierrez-fernandez@esrf.fr

PyFAI: loading data

Integrator

RAW DATA



edgar.gutierrez-fernandez@esrf.fr

• Importing data is made through other python packages:
• FabIO
• Silx
• h5py

• Common file formats:
• .edf
• .tiff
• .h5

• Visualizing is made through:
• matplotlib
• seaborn
• silx

PyFAI: loading data



edgar.gutierrez-fernandez@esrf.fr

PyFAI: loading data

Integrator

RAW DATA integrate1d



edgar.gutierrez-fernandez@esrf.fr

PyFAI: loading data

Integrator

RAW DATA integrate2d



edgar.gutierrez-fernandez@esrf.fr

What happens during an integration
 1) Get the coordinates of every corner of every pixel of the detector (in meters).

 3 coordinates per corner, 4 corners per pixel
 Detector of 1000x1000 = 106 pixels = 1Mpix * 4 (corners) * 3 (coordinates) * 4 (bytes) = 48 Mbytes

 2) Offset the detector’s origin to the PONI and rotate around the sample.
 3) Calculate the radial (2theta) and azimuthal (chi) positions of each corner.
 4) Calculate normalization matrix: polarization, solid-angle, flat-field...
 5) Assign each pixel to one or multiple bins.
 6) Histogram bin position with associated intensities
 7) Histogram bin position with associated normalizations
 8) Return bin position and the ratio of sum of intensities / sum of norm.



edgar.gutierrez-fernandez@esrf.fr

Integration algorithms
 Histogram

 Pixel by pixel procedure.
 Each pixel is split over the bins it covers.
 Corner coordinates have to be calculated (4x

slower initialization).
 The slow down is function of the oversampling

factor, for every image.
 Serial read → Random write

 Sparse Matrix Multiplication
 Bin by bin procedure.
 Creates and stores a sparse matrix with all the

integration information.
 The sparse matrix can be huge: longer

initialization related to the oversampling factor.
 No performance penalty on the integration itself.
 Serial write ← Random read



edgar.gutierrez-fernandez@esrf.fr

Pixel splitting
 No splitting: one pixel to one single bin upon in which bin the center of the pixel is falling.

Bin (k)

Bin (k-1)

Bin (k+1)

The intensity of each bin is the sum of the intensity
of the pixels whose center falls into the radius bin



edgar.gutierrez-fernandez@esrf.fr

Pixel splitting
 Splitting: each pixel intensity is shared between consecutive bins.

Bin (k)

Bin (k-1)

Bin (k+1)

*Full pixel splitting

Each bin is the sum of the intensities of different
pixels multiplied by a weight between 0.0 and 1.0



edgar.gutierrez-fernandez@esrf.fr

Implementation

Python
• Use numpy methods
• No initialization
• Slow, no cache
• Non-recommended (not popular)

Cython
• Use cython methods
• No initialization
• Faster than python, no cache
• Recommended to integrate

10s frames

OpenCL
• Use parallelization through CPU/GPU
• Initialization ~1-3 s
• Cache
• Potentially fast, depending on the GPU
• Best option for large data



edgar.gutierrez-fernandez@esrf.fr

pyFAI interfaces
• Applications:

• GUI applications: pyFAI-calib2, pyFAI-integrate, pyFAI-diffmap-view
• Batch mode: worker
• Scriptable applications: pyFAI-average, pyFAI-saxs, pyFAI-waxs,
diff_tomo

• Python interface:
• High level, direct API: scripts, Jupyter notebook
• Mid level: manually creation of detectors, integrators, units…
• Low level: manually setting the integrator engines

It is up to the user to choose the way he/she uses
pyFAI



edgar.gutierrez-fernandez@esrf.fr

Latest news from pyFAI

 PyFAI-2025.1.0: release on 31/01/2024
 Median filter (cython, OpenCL)
 Unified WorkerConfiguration
 New API for Grazing Incidence experiments



edgar.gutierrez-fernandez@esrf.fr

Project management: Silx & pyFAI

 Compatible with Windows, MacOS, Linux
 MIT licensed: compatible with both science and business
 PyFAI is embedded in the silx-kit project: https://github.com/silx-

kit/
 Silx-kit project is python-based, developed at the ESRF and

includes:
 Open to collaborations:

 About 20 direct contributors from ESRF, from other
synchrotrons, XFELs (Soleil, NSLS-II, Petra-III, Eu-XFEL) and
companies (Xenocs)

 Used by ~90 other projects from many other X-ray sources in
the world (SLAC, ALS, APS, ALBA, NSLS-II, Petra-III, Soleil,
Diamond, SLS, MaxIV...)

https://github.com/silx-kit/
https://github.com/silx-kit/


edgar.gutierrez-fernandez@esrf.fr

pyFAI user community

 PyFAI is used in most European and American synchrotrons/FELs

 User support is provided via the mailing list: pyFAI@esrf.fr (185 subscribers)
 Bugs are discussed via Github issue tracker

 https://github.com/silx-kit/pyFAI/issues

mailto:pyFAI@esrf.fr
https://github.com/silx-kit/pyFAI/issues


edgar.gutierrez-fernandez@esrf.fr

Reasons to choose pyFAI

 Faster than others
 First tool using sparse matrix multiplication to perform integration
 All computation intensive kernels are ported to C, C++ or OpenCL
 PyFAI is the only azimuthal integration tool benefiting from GPU

 Versatile (increasing with every version)
 Wide space to vary the integration protocol
 Generic geometry
 Most detectors already defined (+ custom detector through Nexus file)
 Graphical user interface alternatives (thanks to Valentin Valls)



edgar.gutierrez-fernandez@esrf.fr

Acknowledgements

 Main author: Jerome Kieffer
 Contributors: 43
 Former data analysis unit colleagues:

 Valentin Valls
 Loic Huder
 Thomas Vincent
 Claudio Ferrero

 ESRF Beamlines:
 BM01, BM02, ID02, ID11, ID13, ID15a,

ID15b, ID21, ID22, ID23, BM26, ID27,
BM28, ID28, BM29, ID29, ID30, ID31...

 Trainees:
 Aurore Deschildre
 Frederic Sulzmann
 Guillaume Bonamis

 Other synchrotron/labs
 Soleil: Fred Picca
 Clemens Prescher (Dioptas)
 Sesame: Philipp Hans
 NSLS-II, ALS, APS…

 International Grants:
 LinkSCEEM-2 grant:

 Dimitris Karkoulis
 Giannis Ashiotis
 Zubair Nawaz



ESRF User Meeting 2025
PyFAI tutorial
Jérôm� Ki�ff�r
Edgar Gutiérr�z F�rnánd�z
10/02/2025


